Monitoring the atmospheric boundary layer by GPS radio occultation signals recorded in the open-loop mode

نویسندگان

  • S. Sokolovskiy
  • Y.-H. Kuo
  • C. Rocken
  • W. S. Schreiner
  • D. Hunt
  • R. A. Anthes
چکیده

[1] A new type of radio occultation (RO) data, recorded in open-loop (OL) mode from the SAC-C satellite, has been tested for monitoring refractivity in the Atmospheric Boundary Layer (ABL). Previously available RO signals, recorded in phase-locked loop mode were often unusable for sensing the lower troposphere (LT) or resulted in significant inversion errors, especially in the tropics. The OL RO signals allow sensing of the LT and accurate monitoring of the ABL and, especially, its depth. Comparison of RO-inverted refractivity profiles to ECMWF analysis and available radiosondes generally shows good agreement in the depth of the ABL. However, in a number of cases, ECMWF fails to reproduce the top of ABL. Future OL RO signals will provide information about the ABL depth which is an important parameter for weather prediction and climate monitoring. Citation: Sokolovskiy, S., Y.-H. Kuo, C. Rocken, W. S. Schreiner, D. Hunt, and R. A. Anthes (2006), Monitoring the atmospheric boundary layer by GPS radio occultation signals recorded in the open-loop mode, Geophys. Res. Lett., 33, L12813, doi:10.1029/2006GL025955.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Postprocessing of L1 GPS radio occultation signals recorded in open-loop mode

[1] GPS Radio Occultation (RO) profiling from low-Earth orbiting satellites is operationally used for numerical weather forecasting and is starting to be used for climate studies. Obtaining high-quality observations near the surface requires recording of RO signals in model-aided open loop (OL) mode by the GPS receiver. Postprocessing of the OL RO signals is different from that of the signals r...

متن کامل

A Novel Sampling Approach in GNSS-RO Receivers with Open Loop Tracking Method

Propagation of radio occultation (RO) signals through the lower troposphere results in high phase acceleration and low signal to noise ratio signal. The excess Doppler estimation accuracy in lower troposphere is very important in receiving RO signals which can be estimated by sliding window spectral analysis. To do this, various frequency estimation methods such as MUSIC and ESPRIT can be adopt...

متن کامل

GPS profiling of the lower troposphere from space: Inversion and demodulation of the open-loop radio occultation signals

[1] Global Positioning System (GPS) radio occultation (RO) is a space-borne remote sensing technique providing accurate, all-weather, high vertical resolution atmospheric parameters, including pressure, temperature and humidity in the troposphere and stratosphere. In the moist lower troposphere (LT) RO encounters known problem related to the phase-locked loop (PLL) tracking technique applied in...

متن کامل

Evaluation of Geometric and Atmospheric Doppler for GNSS-RO Payloads

To reduce the sampling rate in global navigation satellite system (GNSS)-radio occultation receivers, it is essential to establish a suitable estimation of Doppler frequency from the received signal in the satellite onboard receiver. This receiver is usually located on low earth orbit satellite and receives GNSS satellites signal in the occultation situation. The occurred Doppler on the signal ...

متن کامل

Atmosphere sounding using GPS radio occultation

Introduction On July 17, 1995 the U.S. Air Force announced “ .. that today the Global Positioning System (GPS) satellite constellation has met all requirements for Full Operational Capability”. Apart from precise positioning GPS signals also can be used to derive characteristic properties of the propagation medium (neutral atmosphere and ionosphere). Onboard the Low-Earth-Orbiting MICROLAB-1 sa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006